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1 Introduction

When we study the transport in turbulent plasmas, including the diffusion of stochas-
tic magnetic-field lines and charged particles, it is inevitable to encounter the large
Kubo number system (Ku ≈ lac

∆⊥
δB
B0

, the ratio of field line’s radial excursion from
the unperturbed tori to its radial correlation length), in which the strong scattering
control the time and space scales so that the linear theory is not available. In this
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case, ∇ ·B = 0 allows to write the magnetic field as a function ψ

dx
dz

= br/B0 =
∂ψ

∂y
,

dy
dz

= bθ /B0 = −
∂ψ

∂x
,

where field lines go along constant ψ . The turbulent diffusivity stemming from this
expression is known as the magnetic-field-line diffusivity Dm. The behavior of the
ψ = const lines for a random ψ function then is equivalent to the diffusion of a
passive tracer in a two-dimensional, steady, incompressible random flow which is
governed by

d~x
dt

= ∇ψ× ẑ,

where ψ is a random stream function. Similarly, the streamlines of this flow are
the contours of ψ . So the geometry of the contours of ψ should be the same for
these two problems. If the Peclet number is large, P� 1, the transport shows
long correlation phenomenon because the tracer particles advected along very large
streamlines diffuse very slowly from these lines to more typical short closed lines
and hence provide a significant coherent contribution to the turbulent diffusivity
D∗. This is consistent with the large Ku system. The larger the Peclet number, the
longer and narrower the bundles of streamlines that dominate the effective transport
in the considered flow (see Fig.1). The geometry of the streamlines is also relevant

Figure 1: Cartoon for the streamlines in large Peclet number/Kubo number) system.

to the geometry of percolation clusters (Details could be found in section 4). So not
only can our problem be associated with the transport in random media problem,
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but also related to the percolation model. So in order to understand Ku > 1 regime,
it is useful to examine the transport problem in random media and the percolation
problem.

We consider three main problems here, the conductivity of a medium with
spatially fluctuating properties (Dykhne problem), the advection diffusion of a tracer
in an incompressible flow (Taylor problem and related shear dispersion), and basic
percolation theory.

2 Conductivity of inhomogeneous media

For high Ku problem, effective transport coefficient in 2D random medium is of high
interest. And the simplest example of such problem related to transport in random
media is a random mixture of conducting. The conductivity of a two-phase thin film
at equal concentrations of the phases and random distribution of them are studied
by A. M. Dykhne in 1969 [1]. He considered a conducting medium consisting of
parts of two types of arbitrary shape and dimensions, in which dimensions of the
system are assumed to be much larger than the characteristic dimensions of the
parts. If such a medium is placed in an electric field, currents flow through it and the
pattern of the currents will be rather complicated, but it is believed that a qualitative
analysis of scaling relations for the effective conductivity σe f f is most important for
the physical understanding of the problem.

Two-dimensional systems have a remarkable symmetry which allows one to
calculate exactly the effective conductivity for arbitrary conductivities of the two
phases. That it is possible to find an exact solution is due to the fact that the system
of equations in the conditions described undergoes a symmetry transformation
which does not change the macroscopic properties of the medium. So the method
of reciprocal media is the key to this problem.

2.1 Conductivity of a two-phase system

The system of equations consists of Ohm’s law j = σe and the equations of a
constant current ∇× e = 0, ∇ · j = 0. The conductivity σ is assumed to be given by
a random function of the coordinates (x,y), taking two values; the regions (I,II) with
the values σ = σ1,2 are statistically equivalent. As we said, We are more interested
in the effective conductivity, defining as

J = σe f f E

where J(E) = V−1 ∫ j(e)dV is the current(field) averaged over the system and σe f f

is the relevant effective conductivity. If the system is isotropic, we are allowed to
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use an elegant reciprocity transformation

j′ = (σ1σ2)
1/2n̂× e

e′ = (σ1σ2)
−1/2n̂× j

(1)

where n̂ is the unit vector normal to the xy-plane. The transformation conserves
the form of Ohm’s law for the new current and field. And the averaged Ohm’s law
becomes

J′ = σe f f E′

with the same σe f f based on the hypothesis that regions I and II are statistically
equivalent. Then this gives us the effective conductivity as

σe f f = (σ1σ2)
1/2. (2)

Thus the logarithm of the conductivity is found to be additive on mixing or the
effective is the geometric mean of σ1,σ2. This exact result is valid for arbitrary
values of σ1 and σ2. Specifically, if σ1 tends to infinity and σ2 to zero, the ef-
fective conductivity may still remain finite. This is interesting result which is
analogous to the percolation threshold. Furthermore, this result is consistent with
the quasilinear theory in small fluctuation limit. Unfortunately, there is no univer-
sal formula for the effective conductivity of a material with an unequal amount of
randomly distributed phases or with more than two phases, because the information
about the volume fractions and the conductivities of the phases is not enough to
determine the effective conductivity. The result will also depend on the spatial
distribution of phases. Specifically, the conductivity behavior near the percolation
threshold may depend crucially on the presence of long-range correlations in the
distribution. It then becomes very complex.

2.2 General conductivity σ(x,y)

Now, we can generalize to more general conductivity which smoothly depends
on the coordinates under such symmetry. For convenience we shall introduce the
quantity χ(x,y) = lnσ −〈lnσ〉 and consider an ensemble of systems such that
the conductivity distribution is an even function of the variables χ . Let us take a
Gaussian distribution for the quantities χ . Again, substitution

j′ = exp{〈lnσ〉} n̂× e, e′ = exp{−〈lnσ〉} n̂× j (3)

won’t change Ohm’s law

j = exp(〈lnσ〉+ χ)e, j′ = exp(〈lnσ〉−χ)e′

Replacing χ by −χ and using the fact that the distribution functions are even in χ ,
we again find that the primed system is macroscopically equivalent to the initial one.
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Then we can repeat the argument of last section, yielding

σe f f = exp〈lnσ〉= 〈σ〉exp(−∆2/2)

for a Gaussian distribution, where ∆2 =
〈
χ2
〉

is the root mean square fluctuation of
the logarithm of the conductivity.

2.3 Current and field distribution characteristic

Certainly, this model makes it is possible to calculate other macroscopic character-
istics of the distribution of currents and fields over the "phases and also within an
individual phase. We shall calculate the average A = 〈(σ −σ1)e〉. We can see that
the expression being averaged is non-zero only in the second phase. Taking this into
account, we find A = 1

2 (σ2−σ1)E2, where E2 =V−1
2
∫

e2dV is the average field in
the second phase. Expanding A term by term and using Eq.(2), we have

A = (σe f f −σ1)E =
1
2
(σ2−σ1)E2.

This would give rise to the distribution of of fields as

E1,2 =
2
√

σ2,1√
σ1 +

√
σ2

E (4)

The corresponding expression for the currents are also easily found

J1,2 =
2
√

σ2,1√
σ1 +

√
σ2

J (5)

If we use J(J1,2) = σe f f E(E1,2). To find the distribution over the phases of the
energy being dissipated, let us use the expression

σ1σ2(
〈
e2〉

1 +
〈
e2〉

2) =
〈

j2〉
1 +
〈

j2〉
2 = σ

2
1
〈
e2〉

1 +σ
2
2
〈
e2〉

2 .

Hence
σ1
〈
e2〉

1 = σ2
〈
e2〉

2 = (σ1σ2)
1/2E2 (6)

The latter equality was obtained by using the relation

1
2
(σ1
〈
e2〉

1 +σ2
〈
e2〉

2) = 〈(j · e)〉= (J ·E)

Thus the energy is dissipated equally in the phases, regardless of the conductivities.
Using Eq.(6) we can calculate the mean square fluctuation characterizing the

non-uniformity of the currents and fields in the system. We have〈
e2〉= 1

2
(
〈
e2〉

1 +
〈
e2〉

2) =
1
2
(

√
σ1

σ2
+

√
σ2

σ1
)E2,

〈
j2〉= 1

2
(

√
σ1

σ2
+

√
σ2

σ1
)J2,〈

j2
〉
−J2

J2 =

〈
e2
〉
−E2

E2 =
1
2
[(

σ1

σ2
)1/4− (

σ2

σ1
)1/4]2.

(7)

5



3 Advective-diffusion transport

For a pure 2D problem, ∇ ·B ensures that all the field lines in domain are closed. So
it is of interest to consider the scattering from closed loop to closed loop for large
Ku system. This leads us to study the cell-layer problem. So in this section we will
focus on the effective diffusion of a passive component (such as test particles, dye,
temperature, etc.) in a laminar flow pattern when local diffusion is present, with a
diffusivity D attributable to collisions or fluctuations. The basic physical picture
here is medium of neighboring non-overlapping convective cells.

In this model, each passively convected component has its own characteristic
diffusivity D in the rest frame of the material. And the actual transport of the
passive component driven by a large-scale gradient gives rise to an enhanced ef-
fective diffusivity D∗ as a result of the increased transport from the convective
motion. There exist several classes of flows, whose transport properties can be
calculated exactly. The simplest example of a shear flow in a tube was considered
by Taylor (1953,1954) [2], who found the effective coefficient of the diffusivity
for the Poiseuille flow is given by D∗ = a2v2

0/(192D) for a large Peclet number
(P = v0a/D) system, where v0 is the flow velocity of convective cells with charac-
teristic size a. Aris (1956) [3] gave a more general solution of the enhancement of
diffusivity to the case of arbitrary Peclet number and different tube cross sections,
where all possibilities are covered by one exact formula

D∗= D+K
a2v2

0
D

(8)

with different values of the numerical constant K.

3.1 Estimate of the effective diffusivity

The behavior of effective diffusivity in the large-Peclet-number limit depends on
the topology of flow streamlines. The best mixing properties are exhibited by flows
with extended streamlines, such as shear flows, where the mixing length tends to
infinity as D→ 0. For example, we can estimate the effective diffusion in a simple
laminar periodic flow pattern [4]. The governing equation for the density of the dye
in the incompressible flow is

∂n
∂ t

+u ·∇n = D∇
2n, (9)

where n is the density of a passively advected agent (concentration of an impurity,
temperature, etc.), D is the molecular diffusion coefficient and u the given fluid
velocity which for a single mode is of the form

u = (ũd/π)ẑ×∇ψ
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with the streamline function ψ . Thus d gives the size of a roll and ũ the maximum
flow velocity (Here we are interested in the effective transport coefficient for scales
L� d). Fig.2 shows a segment of the flow pattern.

Figure 2: Periodic system of convection rolls. The hatched region denotes diffu-
sive boundary layers near the separatrices, where the tracer density gradients are
localized in the high-Peclet number limit.

The micro-structure introduced by the flow is characterized by two characteristic
times: τH = d/ũ the time for circulation around the roll, and τD = d2/D the time
for molecular diffusion of a particle trough a roll. The ratio τD/τH is the known
Peclet number P. Here we consider the interesting case P� 1. Then we can expect
that the effective diffusion is a hybrid of two precess, the convection operated in
cells and the diffusion operated in boundary layers.

Consider the particles within a given roll, and how they will move during a time
τH . Those confined in the interior of a roll will simply circulate around it. However,
those close to the edge in a boundary layer may diffuse across a roll boundary, after
which they are effectively convected a distance d in a random direction depending
on which boundary is crossed. Thus, the effective diffusion coefficient for the
random walk is

D∗= f d2
τ
−1
H ,

where f is the fraction of particles in the boundary layer. To estimate f we note that
it is specified by the number of particles close enough to the roll boundary to diffuse

7



to the neighbouring roll in a circulation time. Thus, f = δ /d with the boundary
layer thickness specified by δ 2 = DτH . This leads to an estimate for the effective
diffusion coefficient

D∗ ≈ (Dūd)1/2 = DP1/2 (10)

3.2 Physical picture

As we mentioned above, the effective diffusion is hybrid of a fast kicks through
cells and a slow diffusion through boundary layers. Precisely speaking, the effective
diffusivity is geometric mean of slow D and fast Dcell(ud). To indicate again the
physical nature of the solutions, we show in Fig.3 a schematic plot of the density
versus x for fixed y. The solid curve would apply for all y except the horizontal
boundaries, the dotted curve would apply at the boundaries.

Figure 3: Schematic density profile for the dye along the x direction. Steep transi-
tions in the density exist between each cell due to boundary layer diffusion.

The main point, of course, is that the density must be flat in the interior of the
rolls because of the rapid circulation so that the global gradient must appear as a
steep gradient confined to the boundary layer. This steep gradient then leads to an
enhanced diffusive flux as given by Eq.(10), i.e, the transport appears only at the
boundary layer and the molecular diffusion the the source of irreversibility of this
system.

3.3 Shear dispersion

In Taylor’s work, he gave a simple recipe for the calculation of contaminant disper-
sion in bounded shear flows at large times after discharge, where he revealed the
mechanism whereby velocity shear begins to pull out a heat or dye spot and leads to
a rapidly increasing rate of dilution. He recognized that for bounded shear flows
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this shear dispersion mechanism continues to operate, even when the concentration
has become nearly uniform across the flow. As long as there is some concentra-
tion variation across the flow, the different velocities in different parts of the flow
u = u0(1− r2/a2) proved an efficient mechanism for longitudinal dispersion (see
Fig.4). The differential advection stretches the tracer cloud, causing it to spread
longitudinally more quickly than a cloud released into a uniform current. In addition,
differential advection creates lateral gradients in concentration, which, when acted
upon by lateral diffusion, accelerates the dilution of the cloud. So the effective
diffusivity must be enhanced by the flow velocity.

Figure 4: Top-view of two channels. In the top channel the side-wall boundary
condition allows slip, and the velocity profile is uniform across y. In the bottom
channel there is a no-slip condition at the side-wall boundary, creating lateral shear,
∂u/∂y. Both channels have the same cross-sectional mean velocity, u. Tracer is
released at t = 0, x = 0. The spatial distribution of each cloud is shown above at time
t1 and t2. Velocity shear in the bottom channel stretches the tracer cloud, and as a
result this cloud spreads longitudinally more rapidly than the cloud in the uniform
channel.

For this case, we expect that De f f = D0 +Dshear. And we need to estimate
Dshear here. The distortion observed in the bottom channel of Fig.3 can be predicted
from the full transport equation of the concentration, saying c,

∂c
∂ t

+ v ·∇c = D0∇
2c (11)

The key to Taylor’s analysis was the calculation of the residual concentration
variation across the flow. So here we use a method much like quasilinear theory,
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defining

c = 〈c〉+ c̃, 〈c〉= 1
a

∫ a
2

− a
2

c(x,y)dy

v = 〈v〉+ ṽ, 〈v〉= 1
a

∫ a
2

− a
2

v(x,y)dy.

We can see that deviations from the depth-average are denoted by a tilde. Plugging
them into Eq.(11) yields

∂ 〈c〉
∂ t

+
∂ c̃
∂ t

+ 〈v〉 ·∇〈c〉+ ṽ ·∇〈c〉+ 〈v〉 ·∇c̃+ ṽ ·∇c̃ = D0∇
2(〈c〉+ c̃)

Analogues to the quasilinear theory, we take the We take the depth-average of each
term, yielding

∂ 〈c〉
∂ t

+ 〈v〉 ·∇〈c〉+ 〈ṽ ·∇c̃〉= D0∇
2 〈c〉

We can see that a new term has appeared, 〈ṽ ·∇c̃〉, that represents the flux associated
with the correlation between the fluctuations in velocity,ũ, and concentration c̃,
relative to their depth-averaged values. With the next few steps we will find a
solution for c̃, so that we might evaluate this new flux term. We can get equation for
c̃ as

∂ c̃
∂ t

+ ṽ ·∇〈c〉+ ṽ ·∇c̃−〈ṽ ·∇c̃〉= D0∇
2c̃

where we have changed to the moving frame with 〈v〉. Now we place an important
condition on the magnitude of the spatial fluctuation c̃. Specifically, we assume that
c̃� 〈c〉. If this is true, then the magnitude of both the third and fourth terms in
Eq.(12) must be smaller compared to the second term, and we may drop the small
terms, reducing it to

∂ c̃
∂ t

+ ṽ ·∇〈c〉= D0∇
2c̃. (12)

This equation describes how vertical fluctuations in concentration are created by
differential advection and destroyed by vertical diffusion. Let seek the stationary
solution, i.e., differential advection is balanced by the vertical diffusion. Then it
becomes

ṽ ·∇〈c〉= D0∇
2c̃.

Take ∇2c̃ = −k2
y c̃ky that k2

y > (2π)2/a2. Then we can get the expression for the
concentration perturbation

c̃ky = −
ṽx

k2
yD0

∂ 〈c〉
∂x

.
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Then the new term due to the mixing of molecular diffusion and shear of the flow
becomes

〈ṽxc̃〉= −∑
ky

∣∣ ˜vky

∣∣2
k2

yD0

∂ 〈c〉
∂x

= −D f low
∂ 〈c〉
∂x

.

So the effective axial diffusivity is given by

D = D0 +∑
ky

∣∣ ˜vky

∣∣2
k2

yD0
. (13)

We can see that this result is similar to the problem in former section that the
effective diffusion for axial spreading is the combination of the laminar flow and
molecular diffusion. This is more clear when ṽ is comparable with mean flow
velocity, which gives us

D = D0 +α
v2

0a2

D0
. (14)

As we can see, this result is akin to the cell problem, i.e., the laminar flow
combining with the molecular diffusion yields the transport.

4 Percolation problem

The percolation problem describes the simplest possible phase transition with
nontrivial critical behavior [5]. The general formulation of the percolation problem
is concerned with elementary geometrical objects (spheres, sticks, sites, bonds, etc.)
placed at random in a d-dimensional lattice or continuum. One is interested in how
many objects can form a cluster of communication and, especially, when and how
the clusters become infinite. Correspondingly, the percolation threshold, is the
minimum concentration at which an infinite cluster spans the space. And this model
is relevant for a number of transport problems. In the regime we are interested,
the geometry of the streamlines ψ is associated with the geometry of percolation
clusters as follows. Let us call "objects" the regions where ψ(x,y) is less than a
specified constant level h. If z = ψ(x,y) is imagined to be the elevation of a random
landscape and h designates the level of flooding, then the objects are the lakes (see
Fig.5). Two neighboring lakes "communicate" if they merge into a bigger lake,
which is a "cluster". So the contours ψ(x,y) = h present the coastlines of the lakes,
that is, the envelopes of the clusters. Then the random contours problem is related
to the formation of clusters of the random objects in percolation theory. The control
parameter of this percolation problem is the level h such that at some critical level,
h = hc the lakes form an infinite ocean and among the contours ψ(x,y) = hc, there
is at least one infinitely long. But the effective diffusion in a random flow presents an
example of a long-range correlated phenomenon (P� 1) without critical behavior.
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Figure 5: Topographical map of streamlines ψ . Lines traverse along constant ψ

contours. Most contours are closed, isolated, thus they make little contribution to
the transport. But the contours along "passes" can take a long path lengths on along
which transport occurs primarily.

The critical exponents of the percolation transition enter the result because the large
value of the control parameter (P� 1) ) picks up a near-critical (in the sense of the
contour percolation) set of streamlines dominating the effective transport.

In two dimensions the basic percolation exponents are known exactly thereby
presenting all necessary characteristics of the long-range contour behavior. The
pure geometrical nature of this transition makes it useful for us to study large Ku
system.

4.1 What is the difference of percolation and diffusion?

There are many physical phenomena in which a fluid spreads randomly through a
medium. Besides the random mechanism, external forces may govern the process,
as with water percolating through limestone under gravity. According to the nature
of the problem, it may be natural to ascribe the random mechanism either to the fluid
or to the medium. Most mathematical analyses are confined to the former alternative,
for which we retain the usual name of diffusion process: in contrast, there is some
work on the latter alternative, which we shall call a percolation process [6]. Here
we would list some examples to illustrate the differences between diffusion and
percolation.

12



4.1.1 Example 1

The simplest example of a diffusion process is the one-dimensional Polya walk. In
this, a particle (the fluid) takes steps of unit length along a straight line (the medium)
starting from the origin. After any number of steps, the particle has, independently
of its previous history, equal probabilities (each 1

2 ) of taking its next step to the right
or to the left. As is well known, the position of the particle after n steps is then a
linear transformation of a binomial variate and has a distribution with zero mean
and variance n. When n is infinite, the particle visits every point of the medium
infinitely often with probability 1.

In the percolation process which is analogous to diffusion process above, fluid
and medium are the same as before; but the stochastic mechanism resides in the
medium rather than in the particle. Specifically, each point of the medium has,
independently of the other points, equal probabilities (each 1

2 ) of being a ’right-
sense’ or a ’left-sense’ point. The particle starts from the origin and takes steps
of unit length, the direction of any step being that of the sense of the point from
which that step starts. Thus the state of the medium entirely determines the motion
of the particle, which moves steadily in one direction until it encounters successive
points of opposite sense, whereupon it oscillates between them. The distribution of
terminal position is nothing like binomial, and it has zero mean and variance 1

18 (81−
(−1)n− (3n+5)( 1

2 )
n−4) after n steps. When n is infinite, there is probability 1 that

the particle will visit only finitely many points.
Briefly speaking, the medium is deterministic while motion is stochastic in

diffusion. But percolation process has deterministic motion and stochastic medium.

4.1.2 Example 2

Some physical situations may be regarded either as diffusion or as percolation
processes. Suppose each individual in a branching (or cascade) process has, inde-
pendently of the other individuals, respective probabilities q2,2pq, p2 of giving birth
to 0, 1, 2 descendants in the next generation. We may visualize this as a diffusion
process by thinking of a branching fluid advancing from generation to generation:
any one branch of the fluid at any generation carries with it a random mechanism
that decides whether it provides 0, 1 or 2 branches of fluid in the next generation.
But equally, we may think of a system of channels leading from the original ancestor
such that each channel divides into precisely two channels at each generation. Each
of these channels has, independently of the other channels, a probability q of being
dammed. This random set of dams in the channels (the medium) will determine how
fluid introduced at the ancestor will spread; this description is now a percolation
process. It is a well known result that, if p‘ 1

2 , only finitely many channels will be wet
by the fluid with probability 1, and that the corresponding probability of ultimate
extinction is q2/p2 when p exceeds the critical value 1

2 . Critical probabilities play
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similar roles in more general percolation processes, as we shall see later.

4.2 General aspects

Generally, the intrinsic and the random characteristics of the medium, together with
any external laws which may operate, completely determine the progress of the fluid.
The intrinsic characteristics of the medium consist in its interconnecting structure.
The random characteristics of the medium are introduced by randomly damming
some of its connexions. The resultant system will be called a random maze. Fluid
supplied at various points flows along all the undammed paths. That is The fluid
will be able to flow from one point to another if and only if there is a connection
without dams between them, and this will be so if and only if there is an undammed
self-avoiding walk connecting them.

We deal with abstract objects called sites and bonds. A bond is a path between
two sites, and may either be two-way or may permit a walk in one direction only
(see Fig.6). Suppose that in an infinite set of sites joined by bonds some (or all)

Figure 6: An example of random maze

of the bonds are dammed in a random manner. An site of the set is said to be
wet by the fluid either if it is a source site or if there exists a walk to the site
from a source site, the walk traversing undammed bonds only and in the permitted
directions. All sites not wet are said to be dry. Given a periodic lattice embedded in
a d-dimensional space and the probability p for each site of the lattice to be wet,
percolation theory is specially concerned with the percolation threshold p = pc, at
which an in f inite cluster spans the lattice. Here a cluster means a conglomerate of
wet s sites, which communicate via the nearest-neighbor rule (see Fig.7). Besides
this site percolation, one can introduce the bond percolation, with clusters of
connected conducting bonds (see Fig.8). The site and the bond percolation problems
are very similar to each other. To be specific, we discuss lattice lattice percolation
mainly with the example of the site problem. Consider a lattice of N sites where
N � 1 and define the concentration of wet sites as x (note that x has the same
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Figure 7: 2D triangular lattice bond per-
colation clusters at critical pc = 0.3473

Figure 8: 2D square lattice site percola-
tion clusters at critical pc = 0.5927

meaning of p mentioned above). Then we have the following results for N� 1:

1.If x� xc, only small isolated clusters exist,
2.If x increases, larger clusters would form,
3.There exists a critical xc at which an infinite cluster definitely appears.
4.Critical probability decreases with increasing dimension d

5.There exists exactly one (x≥ xc) or no (x < xc) infinite cluster for 2D/3D.

This infinite cluster is characterized by the density Ps(x), which denotes the proba-
bility for a given site to belong to the infinite cluster (Ps(x) = Ncluster

N ). In the vicinity
of the percolation threshold, the function Ps(x) is non-analytic. There is extensive
numerical evidence for the power dependence

Ps(x) ∝ (x− xc)
s
θ (x− xc), |x− xc| � 1, (15)

where θ (x) is the Heaviside step function. The exponent β is one of the standard
set of critical exponents that govern the behavior of different quantities near the
critical point. Its value has been studied in many works. It is summarized in [5].
These exponents depend only on the dimension of the space and not on the type of
lattice or the kind of percolation problem.

5 Conclusion

The idea of magnetic confinement fusion is to organize the geometry of the magnetic
field (e.g., nested toroidal magnetic surfaces) in such a way that χ⊥ controls the heat
losses from plasma. In reality, however, there may arise irregularities of B, which,
due to the triggering of the large longitudinal conductivity χ‖, can significantly
increase the effective heat conductivity χ∗⊥ across the unperturbed magnetic field [7].
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In a two-dimensional magnetic field, B = ∇ψ(x,y)× ẑ, the reciprocity theorem
is still valid (see section 2). Hence in the macroscopically isotropic case the effective
heat conductivity is given by [8]

χ
∗ = (χ‖χ⊥)

1/2. (16)

Ref. [5] also talked about the "Magnetoresistance of inhomogeneous media with
the Hall effect", where he used the method mentioned in section 2 and 3. In the
case of stronger magnetic perturbations, the magnetic line diffusivity is given by the
percolation scaling

Dm ≈ λ⊥
δB
B0

R−1/(νdh+1)
∝ [

δB
B0

]0.7

There are more applications of these theorems to the problems of transport in
turbulent plasmas that we can learn in the future.
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